Contextual object categorization with energy-based model

نویسندگان

  • Changyong Ri
  • Duho Pak
  • Cholryong Choe
  • Suhyang Kim
  • Yonghak Sin
چکیده

Object categorization is a hot issue of an image mining. Contextual information between objects is one of the important semantic knowledge of an image. However, the previous researches for an object categorization have not made full use of the contextual information, especially the spatial relations between objects. In addition, the object categorization methods, which generally use the probabilistic graphical models to implement the incorporation of contextual information with appearance of objects, are almost inevitable to evaluate the intractable partition function for normalization. In this work, we introduced fully-connected fuzzy spatial relations including directional, distance and topological relations between object regions, so the spatial relational information could be fully utilized. Then, the spatial relations were considered as well as co-occurrence and appearance of objects by using energy-based model, where the energy function was defined as the region-object association potential and the configuration potential of objects. Minimizing the energy function of whole image arrangement, we obtained the optimal label set about the image regions and addressed the evaluation of intractable partition function in conditional random fields. Experimental results show the validity and reliability of this proposed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Context based object categorization: A critical survey

Please cite this article in press as: C. Galleguillos doi:10.1016/j.cviu.2010.02.004 The goal of object categorization is to locate and identify instances of an object category within an image. Recognizing an object in an image is difficult when images include occlusion, poor quality, noise or background clutter, and this task becomes even more challenging when many objects are present in the s...

متن کامل

Contextual-Guided Bag-of-Visual-Words Model for Multi-class Object Categorization

Bag-of-words model (BOW) is inspired by the text classification problem, where a document is represented by an unsorted set of contained words. Analogously, in the object categorization problem, an image is represented by an unsorted set of discrete visual words (BOVW). In these models, relations among visual words are performed after dictionary construction. However, close object regions can h...

متن کامل

A Hierarchical Probabilistic Model for Rapid Object Categorization in Natural Scenes

Humans can categorize objects in complex natural scenes within 100-150 ms. This amazing ability of rapid categorization has motivated many computational models. Most of these models require extensive training to obtain a decision boundary in a very high dimensional (e.g., ∼6,000 in a leading model) feature space and often categorize objects in natural scenes by categorizing the context that co-...

متن کامل

Generic Object Recognition

Generic object recognition recently emerged as an important field in computer vision. But the field is complex. In this work we present different approaches that investigate how different cues of image information can be used to solve a confined part of that huge general problem. First a weakly supervised, modelfree framework which uses local planar regions is presented and good classification ...

متن کامل

An Object Co-occurrence Assisted Hierarchical Model for Scene Understanding

Hierarchical methods have been widely explored for object recognition, which is a critical component of scene understanding. However, few existing works are able to model the contextual information (e.g., objects co-occurrence) explicitly within a single coherent framework for scene understanding. Towards this goal, in this paper we propose a novel three-level (superpixel level, object level an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1604.06852  شماره 

صفحات  -

تاریخ انتشار 2016